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Asymptotic methods for :~olving the axisymmetric dynamic non-stationary contact problem for short and long values of the time of 
indentation of a rigid punch into an elastic half-space are developed. Using Laplace integral transformations (with respect to time) 
and Hankel integral transformations (with respect to the coordinate) the contact problem is reduced to solving an integral equation 
in the unknown Laplace transformant of the contact stresses under the punch. The zeroth term of the asymptotic solution of the 
integral equation for large values of the Laplace parameter (short times) is constructed using a special approximation in the complex 
plane of the symbol of the integral-equation kernel. The asymptotic solution of the integral equation for small values of the Laplace 
parameter (long times) i,; constructed in powers of this parameter. The solution of the contact problem is obtained using an inverse 
Laplace transformation, applied to the solutions of the integral equation. © 2000 Elsevier Science Ltd. All rights reserved. 

The problem was investigated previously in [1-4], etc. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will consider the dynamic non-stationary contact problem of the indentation of a rigid punch of 
radius a (r ~< a) into an elastic half-space (z ~> 0, 0 <~ r < oo). The friction forces between the punch 
and the half-space are ignored. The form of the punch and its settlement on the half-space is given by 
the functionf(r, t)(0 ~< r ~< a, t >1 0). 

The equilibrium equations of the theory of elasticity in the case of axial symmetry of the stress-strain 
state of an elastic medium can be written in the form [2, 5] 

u ,,2a 2u a 2u lau .,, ,,2,a2w i a2u 
-Tr+  a--y+grr  at2 

+ 2 a =w 2 a2u. a 2w 
aZ 2 r ar  ) r az ) c 2 a t  2 

_ C 2  _ C I = f~2 _ m _  tt  7~ Ix, c2= 
c~ Z,+2~t' 

(1.1) 

The functions u(r, z, t), w(r, z, t) in (1.1) are the radial and normal displacements of the elastic medium, 
cl and c2 are the velocities of longitudinal and transverse displacement and stress waves in the elastic 
medium, p is the 6~nsity of the material of the elastic medium, and 3. and ~t are the Lam~ elasticity constants. 

At the initial instant of time, assuming that before the indentation the elastic medium is at rest, its 
displacements uO', z, t), w(r, z, t) and their velocities au/Ot, aw/Ot are equal to zero. 
The displacements of the elastic medium u and w when u, w r, z --> oo (in the rest zone) are equal to 
zero, together wilch their partial derivatives. 

In the generally accepted notation of the theory of elasticity [5] the mixed boundary conditions of 
the problem have the form (t ~> 0, z = 0) 

%.=0 (0<~r<**), oz=0 

w = f ( r , t )  (0  ~< r ~ < a )  
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( a < r < ~ o )  

(1.2) 
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where Zyz, (r z are the shear and normal stresses respectively on the surface of the elastic medium. 

2. THE I N T E G R A L  EQUATION OF THE CONTACT P R O B L E M  

The contact problem in question reduces to solving an integral equation using the Laplace integral 
transformation (with respect to time t) 

wL(r,z ,p)  = ~ w(r,z,t)e-P'dt 
0 

i i**+c L 
w(r, z, t)=:---:  I w (r,z ,p)emdp 

: ~ i -i** + c 

(2.1) 

and the Hankel integral transformation (with respect to the coordinate r) 

wLh'(y, Z, p) = 7 wL(r, Z, p)Jo(Yr)rdr 
0 

wL (r,z, p) = ~ wLH (~[,Z, P)Jo(¥r)~[d~ 
o 

(2.2) 

where Jo(r) is the zero-order Bessel function. These transformations are applied in succession to the 
differential equations of motion of the elastic medium (1.1) and to the boundary conditions of contact 
problem (1.2), taking the initial conditions and the conditions at infinity into account. It is assumed 
here that the integrals in (2.1) and (2.2) of the elastic displacement functions u(r, z, t), w(r, z, t),f(r, t) 
exist. As a result of product operations, as an intermediate result, we obtain formulae for the 
displacement and stress transformants of the elastic medium 

/ g ~ , \  
2 -o2~- - ' o r ' r )  . .  wt,(r ,z ,p)  = ~ tpLH(7, p)~2[2y~e-O,z _(),2 +t~l )e l Ro(y,p) -1" 

o 
(2.3) 

ffL (r, Z. p ) = --~OLHo (% P)[41a¥2O'ff2e-°'z+ (y2 + 012 )(X72 _ (X + 2~t)(~ 2 )e-°2z ] ~ ya~ (2.4) 

in which we have introduced the following notation 

ffl = 4Y 2 + pp2 / ~t, if2 = 4Y 2 + pp2/(X + 2[0 

Ro (% P) = 41"ty2OI ~2 + (y2 + a~)(X~'2 _ (X + 2lX)c~) 

(2.5) 

and q0L/-/(y, p) is the Laplace-Hankel transformant of the unknown contact stresses under the punch 
q0(r, t), where ~z(r, O, t) = -(p(r, t). 

Realization of the mixed boundary conditions of contact problem (1.2) in the Laplace transformants, 
taking relation (2.3) into account, leads to the integral equation of the problem 

i q~L(~,P)~k(~,r)d~ = f L ( r . P )  ( 0<~ r<~ a) 
o 

k(~, r) = ~ yo'2 (y 2 - 0~) J° (~)J° (~)  d 7 
o Ro(Y,P) 

(2.6) 

which is an integral equation of the first kind in the Laplace transformant of the unknown contact stresses 
q~L(r,p). For convenience later, integral equation (2.6) will be reduced to dimensionless form using the 
replacement of variables r = ar', ~ = a~', y = u'p/c2 and taking into account the notation introduced 
above 
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I ~PL(~,P)~flO , d~=OofL(r,p) (0~  r ~  l) 
o 

ko(~, r) = 7 K(u)Jo(~U)Jo(ru) du, K(u) = "u02 
0 R(u) 

R(u)=(2u 2+1) 5-4u20!o2,  O ! = ~ u 2 + l ,  

0 o = lac 2/(a2p), A = c 2/(pa) 

(2.7) 

Integral equation (2.7) then reduces to the equivalent integral equation with a difference kernel [6]. 
To solve it we multiply the left and right-hand sides of (2.7) by 

rdr 

and then integrate with respect to r from 0 to x. After interchanging the order of integration, using 
integral representations of the form [7] 

i rJ°(Yr) dr = sin_._._~_~ ~ rJo(Yr) dr = c°sTx (2.8) 
o , / x 2 - r  2 V " ~ ~ v 

and differentiating the left- and right-hand sides of the relation obtained we arrive at the integral equation 

I q~t'(~,pI~d~ K(Y)Jo u cosu du=Oog(x, p) 
0 0 

g ( x , p ) = d i  rfL(r'P) dr 
dx o ~x2 - r 2 

(0~ < x<~ 1) 

(2.9) 

Using the integral representation for Jo(x) 

.g 

q x - - ;  ~ 

and interchanging the order of integration with respect to y and ~ in (2.9), we obtain the new integral 
equation 

I (o(~,p)d~ K(u)cosu cosu du = rcO0 g(x,p) 
o o 2 

(0~  < x ~  < 1) 

Continuing to(x,p) and g(x,p) evenly with respect to x in the last integral equation in the section [-1, 
0], and the inner integral in the section (-.0% oo) and multiplying it by 2(1 - ~2), we obtain a convolution- 
type integral equation of the first kind with difference kernel 

! 

! c0(g, p),g~ K(u)cos u ~ - x du = ~Og(x,  p )  (I x I <- 1) 
-1 o A 

(2.10) 

in which 

K(u) = 2(I - l~2)l u l ~ + l ~2 [R(u)] -i, 0 = 2(I - 132)0o (2.11) 

o~(~,, p) = I (2.12) {; ~ 2 ~ ' ~ - -  ~ 2 ~  
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while R(u) is given in (2.7). 
Relation (2.12) is an Abel-type integral equation. Solving Eq.(2.12), we obtain a relation between 

the functions (pL(x, p) and t0(~,p), expressed by the formula 

= _ 2  d j  co(~,p); d~ (2.13) q) t(x,p) 
r~ dx~ ~ _x  2 

3. THE ASYMPTOTIC SOLUTION OF INTEGRAL EQUATION (2.10) 
FOR LARGE VALUES OF p 

Below, when constructing the zeroth term of the asymptotic form of the solution of integral equation 
(2.10), it will be necessary to factorize the generalized function K(u) (2.11) in the complex plane u = 
o + ix. To simplify this operation we replace K(u) in (2.10) by the new function 

K E (u) = 2(1 - I] 2)4(u 2 + ~.2)(u 2 + ~2)[R(u)]-] (3.1) 

for which the following limit obviously holds 

K(u) = lim Kt(u ) 
(---)0 (3.2) 

Here, integral equation (2.1) with the new symbol of the kernel K~(u) is written in the form 

S tot (~, p)kt a~ = 2~Og(x, p) 
-I 

kt(t)= 7 Kt( u)ei"tdu 

(I x I ~< i) 

(3.3) 

Since the integral operator in (3.3) tends uniformly with respect to e in the interval Ix[ ~< 1 to the 
operator (2.10) on the left-hand side of (2.10), we have 

(O(x,p) -- lira ~t(x,p)  
t---~0 

(3.4) 

It should be noted that KE(u) is an even function, which is real on the real axis of the complex 
plane u = o + ix, and has six branching points of the algebraic type in this plane u = + i, u --- _.+ il3, 
u = +- ie and two poles u = --+iT]0 (Rayleigh poles); in addition, it possesses the following asymptotic 
properties 

Kt (u) = Ar + O(u 2) (u ---) 0, A = 213(I - I~ 2)) (3.5) 

Kt(u) = 1 + O(u -2) (u --* .o) (3.6) 

To obtain the principal term of the asymptotic form of the solution of integral equation (3.3) for small 
values of the parameter A (large values of p) we will approximate the symbol of the integral-equation 
kernel Ke(u) by an expression K°(u) of the following form 

u 2 + 11~ M(u) (3.7) 

M(u)=exp[-d(~+--fulfl-'+'~u + ~-~-/u lffi'-Z~-/u-!-I~)] 

in the complex plane u = o + ix, where the approximation parameter d is found from the condition 
K~(0) = K~(0) and is calculated from the formula 
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d = (1 - # ) - 2  in(Aqo2/~) (3.8) 

The approximation K°(u) possesses all the above-mentioned properties of the function Ke(u) in the 
complex plane and is single-valued and regular in this plane with cuts drawn in it from the branching 
points to +_ oo along; the imaginary axis (o = 0) with knocked-out points u = ---i~q0 and chosen branches 
on the cuts with the condition that ~/1 = 1. 

Moreover, along the real axis (x = 0) of the complex plane, K~(u) and K°(u) are close to one another, 
and the difference between them for all v e [0, 0, 44] does not exceed 4%. Note that an approximation 
of the form (3.7) is not unique, but may be the simplest. 

The principal telm of the asymptotic form of the solution of integral equation (3.3) for small values 
of A can be represented in multiplicative form [8, 9] by the formula 

co. ( , .p)  = , oCO+t -T- .  co. P:%-T -'p ,(xX, p (3.9) 

in which the functions 03~(x,p) and co_ ~ (x,p) are solutions of the integral equations 

O)~:(~, p)d~ ~ K°(u)ei"C~-X)du= 21t: g(+Ax $1, p) 
0 -* , .  

(3.10) 

(0<x<~ , )  

co~(~,p)d~ ~ K°(u)ei"({-'~)du = 2/tO Ax 
... _. A g('p) 

(3.11) 

(---0 < x <**) 

where ~ is a correction factor, found when solving integral equation (3.3). 
The solution of integral equation (3.10) in the case of a plane punch g(x, p) = fm(p) can be fairly 

simply determined by the Wiener-Hopf method [9, 10] and is given by the formula 

0ft(p) 1 ** e -i'~ 
co~:(x,p)= AKo(O) 2x :.. iuK°(u---~) au (3.12) 

In (3.12) the functions are regular functions in the upper half-plane (Im (u) > --e, e > 0) and the 
lower half-plane (Im (u) < e), respectively, and satisfy the factorization condition 

K°(u) = K°+(u)K° (u) 

in the complex plane u = o + ix c with the above-mentioned cuts. The general form of these functions 
is given by the fo:rrnula 

qo -T- iu 
(3.13) 

The solution e f Eq.(3.11) in this case - the case of a plane punch - is given by the formula [9] 

0 ft(p) (-~*<x<~*) (3.14) p) = 

The most promising form of the solution of integral equation (3.10) for further use is the solution 
which is represented in the form of certain integrals, obtained by calculating the contour integral in 
(3.12) 
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OfL(P) t~,:,x ~) 
(o~(x.?)= AX~'_(0) *-~ .t 

~2t+(x.p) = / ~ O(y)e_d(,.13_2,,/2 sirl(dl~fi-~_y~Vt~_~)e_Y, dy + 
nlS 

+lTt t O(y)e-,t¢ l.fi-~-~._ ~/'ffS-~-~,'- /2e_rXdy + X °_ (0-"---'~) 

Y- n0 Kto_(o) = Vrd%/-~ ea(,-~(l~) 2'' 

(3.15) 

Taking the notation introduced and formula (3.15) and (3.14) into account, the solution of integral 
equation (3.3) in the form (3.9) can be written as 

°'.,.., .... ,-r J+-" ) (L~) OJt(Lpl= 2l"tO(I-P-P--!a il)l'z+lk'---A--'l* I2~- "P (3.16) 

For the final representation of the function cot(x,p) it is necessary to determine the correction factor 
go in (3.16), which is determined [11,12] by substituting expression (3.16) with e = 0 into Eq.(3.3), as 
a result of which we obtain the equation 

a _j +( A '1) f2° 'P k° dF~=27tOft'(P) (3.17) 

To evaluate the integral in (3.17) approximately for small A, we establish the principal terms of the 
asymptotic form of the functions occurring in the integrand as A ~ 0. We have 

r 

/ 2 ,3.18, n': " ^ 

( ~ . f_ )  Ko(u)cosu ~.AX du d I ko = 2~ = - 2 ( I  - 13 2 )I3A 2 d~ ~ -  
0 X 

(3.19) 

When obtaining (3.19) we used the integral 

i ,cosu(~- x)du = d I 
o d.~ ~ -  x 

which is understood in the sense of the generalized functions of the theory of the Fourier integral 
transformation [13]. Substituting (3.18) and (3.19) into (3.17) and comparing its left- and right-hand 
sides, we obtain that 

lXo = g/4 (3.20) 

Transferring now to the Laplace originals in (3.16) for coe(x,p) and then taking the limit in the formulae 
obtained as e ---) 0, we obtain 

e)(x,t) = 2(I-132~'~t iLao f(q~)E(x,t-'Od'{+ foE(X,t)] 

! 

E(x,  t)  = ! ta° (a + x, ~ga  o_ (a  - x, t - ~)a~ 
o 

n o (x, t) = lira ~'l~:(x, t) 
~--~0 

(3.21) 
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J 
Q':~(a+x,t)= ~ exp 

, _ t -  riot ~ "ql,t) - ~ ,  e(u,u ) = H(t - u) - H(t - u  ), t ]  ~ = a + x  (i = ~,2) 
¢i 

H(t) is the Heaviside function an f0 is the initial indentation of the punch prior to the instant of time t 
= 0. The asymptotic solution of the contact problem for small t is given by the formula obtained after 
applying an inverse Laplace transformation to (2.12) 

(3.22) 

and which holds for t < 2a/cz, since the asymptotic solution of integral equation (3.3) in the form (3.9) 
is affected when A = c2/ap < 2 [11]. 

Analysis of forrrmlae (3.22) and (3.21), which determine the field of the contact stresses cp(r, t), shows 
that it has a fixed root-type singularity and a mobile singularity of the same type on the front of the 
longitudinal wave which propagates from the edge of the punch to its centre. There is no singularity 
at the front of the transverse wave, which propagates under the punch after the longitudinal wave. 

4. THE ASYMPTOTIC SOLUTION OF INTEGRAL EQUATION (2.10) 
FOR SMALL VALUES OF p 

Based on the a~/mptotic properties of the symbol of the kernel of integral equation (2.10) (the function 
K(u)), defined by (3.5) and (3.6), the kernel of this equation can be represented in the form 

I k(t) = reS(t)- ~ (I - g(u))cosut du (4.1) 
2 0 

where 8(t) is the l)irac delta function. This representation of the kernel enables integral equation (2.10) 
to be written in the form of an integral equation of the second kind 

co(x, p) = ~-  g(  , I ~ ~ -  x 

F(t) = ~ ( I  - K(u))cosutdu 
O 

(4.2) 

in which the function F(t) is even and is represented in the form 

4 

F ( t ) =  T-, an I t l "  +F~(t) (4.3) 
n=0 

a o = ~  (I-K(u))du,  a n = -  a 2 (u 2-u2K(u)+hn)du o 2 hn' = - 

a3 = - ~ / ~ ,  a4 = (u4 _u4K(u)+hluZ +/~)du 

cos u t  - ! + - -  u2t2 u4t4 ~du = O ( t  6 )  
2 !  4 !  ) 
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The estimate in (4.3) for the function Fz(t) follows from the representation of K(u) for large values 
o fu  

u" u k u  ° )  

3J] 4 - 4~ 2 + 3 ~8 + 2~6 _ 18134 + 22j]2 _ ! 1 
ht = 4 ( I -~2)  ' h2 = -  16(1-J]2)2 

(4.4) 

The structure of the function F(t) and, consequently, of the kernel k(t) (4.1), for small values of It I, 
shows that the solution of integral equation (4.2) must be sought in the form of a section of a series in 
negative powers of A 

3 
o~(x,p)= Y. m,(x,p)A-" (4.5) 

n=0 

To determine the terms of the series con (x, p)  from (4.5) it is necessary to substitute (4.5) into (4.2) 
and equate coefficients on the left-and right-hand sides of (4.2) for like powers of A, as a result of which 
we obtain (0 = bA, b = 2(1-132)1.1a -]) 

r~0(x, p) = g(x,p) 

""2' ' O~n(x,p)= a k ~ O)n_~(~,p)l~-xl n d~ (n~ I) 
/l k=0 - I  

(4.6) 

The functiong(x,p) is given by the formula from (2.9). Calculating co n (x,p) and the quadratures, which 
arise here, in succession for n = 0, 1, 2, 3 we obtain 

dx 
COo(x,p)=b--:-- ~ rfL(r'P) dr, 2ba° i )dr 

aXo ~ °~t(x'P)= ~ o 

(02(x.p, = 2b fS rfL(~f_)(2a2°+al,l-4l-r2l(l.r)))dr+ 
t 0 4 1 - r  2 ~ 7t 

ar] + al I r fL ( r ,  p)l(x, r) 
0 

0~3 (X, p, = 2.---~b [~ tfL(~.~)(4a--~+2aoal(I-~[l-r21(l.r,)~r+ 
/I Lo 4 1 - r  2 [, n 

I 
+ S rfL( r, P)(2at 1(1, r) - (aj + 2a 2)"q/l - r 2 )dr + 

0 

(-~-- ]! r fg ( r ' p ) ' l  x+~x2- r  2 + ( l + x  2) +a a ~ a r l ;  l(x,r)=ln 
41_r 2 J r 

(4.7) 

To calculate the quadratures in (4.6) it was assumed that the function fL(r, p) was continued oddly 
with respect to r in the section [-1, 0]. Formulae (4.5) and (4.7) give the asymptotic solution of integral 
equation (4.2) or, which is the same thing, Eq.(3.1), for large values of A (or small p). 

To obtain the asymptotic solution of the contact problem in question for large t, which is given by 
(3.22) in dimensional variables r and t, it is necessary to transfer in (4.5) to the Laplace originals for 
determining 0~(x, t). Formally making this transition, in the general case off(r, t), we obtain the solution 
of the contact problem in the form 

(a)"[ Wn(t) +an 7 ao~n(~,t) 2~_r2 ] (4.8) 



The axisymmetric dynamic non-stationary contact problem 141 

In formula (4.8) (o(k)(a, t) denotes, in symbolic form, the derivative with respect to t of the functions 
(on (a, t). The functions {on (r, t) are given by (4.7) (n = 0, 1, 2, 3), in which, after transferring to the 
originals, it is sufficient to replace % (r, p) on the right-hand by ton (r, t), while the function fL(r, p) is 
replaced by its original f(r, t). 

Note that solution (4.8) holds for large t (t > 2a/c2), which follows from the joining of the asymptotic 
solutions along the integral characteristic P(t), which are calculated for short and long t in Section 5. 

In the important special case when the indenting punch is plane, i.e. whenf(r, t) = f(t), the solution 
of the contact problem, ignoring the generalized component of the solution and retaining the first four 
terms in it, has the form 

2ba [ 2a o a f(t)  + 
,o(r,t) = l t ~  t.f(t) + ~ c2 

+ ~-L=--~=-+212a°2 a,14_3ar~22}]I~=212j~(t)+ 

) / 214a~ r2 2al 2a2 11-9 f:(t) 
+ 3-2 - + 3 + 3 

(4.9) 

The dots denote derivatives with respect to t. 

5 FORMULAE FOR CALCULATING THE FORCE P(t) 
ACTING ON THE PUNCH 

An important factor in solving the contact problem is calculating the force P(t) acting on the indenting 
punch (or, with the opposite sign, the reaction force of the elastic medium on the punch penetrating 
into it). To calculalte the force P(t) we will use the general formula which, for the problem in question, 
has the form 

P(t) = 2~J q)(r,t)rdr (5.1) 
0 

and in Laplace tr~tnsforms in dimensionless form has the representation 

I 

pL(p) = 4a2 S o~(~, p)d~ (5.2) 
0 

We have taken formula (2.13) for (pL(x,p) into account here. 
We represent the function co (x, p) by formula (3.17) with e = 0 and, substituting it into (5.2), we 

obtain 

PL(P)=-T- fL(P)Jo  a°+ ,p o ,p (5.3) 

The quantity b is given before formula (4.6). 
We make the following replacement of variable in the integral in (5.3) 

I + a =Aa " (5.4) 

and, omitting the primes, we obtain 

rc2 ba 2 fL (p)~ t~O+ (~, p)fl0_(y - ~, p)a~ 
p L ( p ) =  o 

(5.5) 
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Considering the integral in the last formula as a convolution of the Laplace functions D ° (x, p)  and 
taking into account their integral representation in the form of the Laplace integral 

n°u,p) --± T : x  
2rci -~.+c sK°o+ (is) ds (Rec > 0) 

where K0°+ (u) = lim K°+ (u) (e ---) 0), we obtain for pL(p) the principal term of the asymptotic form 
for small A in the form 

rt.ba2 L I ~.?c er.dz 
p L ( p ) = ~ f  ( p ) ~  j 2 ~ 2 

13)' 2xi -~+c z [K~+0z)] 

,+oll K°+[iz>=~fz~ZZno +z  exp - 

(5.6) 

The integrand in the complex z plane has the following singular points: two branching points z = -[3 
and z = -1, a single pole at the point z = -13 and a triple pole at the point z = 0. Closing the integration 
contour in the left half-plane with cuts drawn in it from the branching points z = -13 and z = -1 to --~ 
along the negative part of the real axis with a choice of the branches of  the multivalued functions, to 
obtain the asymptotic formula P(t) (t < 2a/c2) when evaluating integral (5.6) it is sufficient to take the 
triple pole at zero (z = 0) into account. Converting the formula for P~(p) obtained in this way to the 
Laplace originals we have 

l~2ba2 r 2aj'(t ) 4iK:+(O) 
e(t)= ) K s+(O ) / ( t ) -  

(6  t+ ( ) 2K" tm h - t 
( K, Xo> K,TCO> )Ta'o c, K, XO> J 

K t + (iz) = Kg+ (iz) / z 
(5.7) 

i - f A (  - 2 "  ~ /  p- no . 

KFXo)= L 413"° ~ 413 "4.~ ~'~"-J 

(h = ~-"/-~) 

Here f0 is the initial indentation of the punch up to the instant of time t = 0, the quantityA is given in 
(3.5) and d is given in (3.8). 

In the case of long times t we obtain a formula for P(t) from the formulae in Section 4. For this purpose, 
changing to Laplace originals in (5.2) and taking formula (4.5) for o~(x, p)  into account, we obtain in 
the general case (t > 2a/c2) 

P(t)=4a 2 £ (a--q-I" ~ On°~.(~,t)d~ 
.=o k c2 ) o Or" - -  

(5.8) 

In the case of a plane punch f(r, t) = f(t) we obtain an expression for P(t) in terms of the function 
f(t) and its derivatives f(n)(t) 

P(t)= 4 ba2 £ (a--a--]ndnf'n)(t) 
n ,=o kc2 ) 

(5.9) 

The first of the dn (n = 0, 1, 2, 3) are given by the formulae 
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d o = ~, d I = 2a 0, d 2 = 2(2n-la~ + 2a I / 3) 

d 3 = 2n-2(4a03 + 7naoa ~ /3+ 2 x 2 a j / 3 - 2 n 2 a 2 / 3 )  

where b is defined just before formula (4.6). 
In the case of the instantaneous indentation of a plane punch, its law of motion is given by the function 

f(t) = foil(t), where H(t) is the Heaviside function and f0 is the value of the indentation of the punch 
into the elastic half-space. It can be seen from (5.9) that in this case, when t >> 2a/c 2 the value of the 
force P(t) restraining the punch at a depth f0, is identical asymptotically with the value of the force P 
corresponding to the static axisymmetric contact problem of the indentation of a plane punch into an 
elastic half-space [5]. 

A comparison of the contact stresses under the punch for short and long times of its penetration 
into the elastic medium is difficult in view of the fact that, in the contact stresses obtained for long times, 
the diffraction patte:m of the wave process is not isolated in explicit form. It is represented in this solution 
in the form of a series in powers of the time t. Hence, a comparison of the asymptotic solutions obtained 
for short and long times is made with respect to the smoother characteristic of the contact problem - 
with respect to the :force P(t) acting on a plane punch when f(t) = Vot (Vo is the rate of penetration of 
the punch). 

We give below values of co P(t) (co = c2(laa2v0) -1) for short and long times, calculated from (5.7) and 
(5.9) respectively for various values of x = tcl/a 

x 0 .8  ! .0 ! .2 1.4 1.6 1.8 
coP(t) [ 1.03 9.51 7.99 - - - (v = 0.25) 
coP(t) -- - 7.80 8.42 9.04 9.65 (v = 0.25) 
tt~P(t) t2.69 11.25 9.80 8.36 - - (v = 0.30) 
off'(t) . . . .  8.65 9.26 9.87 (v = 0.30) 

It can be seen that joining of the values of the force P(t) occurs for v = 0.25 when x = 1.2, and for 
v = 0.30 when x = 1.4. 

6. T H E  M O T I O N  OF A P U N C H  ON T H E  S U R F A C E  
OF AN E L A S T I C  M E D I U M  

To determine the law of vertical motions of a rigid punch of mass M on the surface of an elastic half- 
space, we set up the differential equation of its motion like the motion of a point mass. 

Mf~Ct) = QCt) (6.1) 

(Q(t) is the elastic resistance force of the medium), with initial conditions f(0) = f0(f0 is the initial 
indentation of the punch up to the instant of time t = 0), and f(0) = v0 (v0 is the initial rate of penetration 
of the punch when t = 0). 

Applying a Laplace transformation to Eq.(6.1) we obtain the equation in terms of transformants 

M[p2 f L ( p ) _  foP_Uo ] = QL(p) (6.2) 

The transformant of the ~lastic resistance force of the medium QL(p) is determined, if we take into 
account that Q(t) i,; identical in value with P(t) - b y  the force acting on the punch taken with the opposite 
sign 

U 

QL(p) = _pL(p) = _ f tpL(x, p)dx (6.3) 
- U  

and, by (5.9), can 1be represented, for example, for smaUp, by the formula 

QL(p) = _ 4  ba2 ~ (hp)ndjL(p)  (h = a_) (6.4) 
n=O C 2 
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Substituting (6.4) into (6.2) and retaining terms up to (hp) 2, we determine the transformant fL(p) 
(fo = 0) 

fL(p)  = MUo 1 
8(1-132)~  1 + ~ h p  + ~2(hp) 2 

rll =ru/t,  1"12 =(rih2) -i + d  2 

(6.5) 

Transferring to the Laplace originals in (6.5), we obtain for large values of  t (t > 2h) 

to2 = 4rl2 - rh 2 + 2 / 2 a ~  + 2 a l / ~ h 2  ' ~ = 8(1~-1~2)P a 
4112 , a = l  n~, n ,~ j M 

(6.6) 

Graphs of fi~f(t) as a function of x for various values of the parameter  rn = p/(rcp0) (P0 = g/(fga3)) 
and Poisson's ratio v are shown in Fig. 1. Curves 1, 2 and 3 correspond to v = 0.10, 0.25 and 0.35 
respectively. The continuous curves correspond to m = 0.1 and the dashed curves correspond to 
m = 0.05. It can be seen that the parameter  m, which represents the change in the mass of the punch 
M for fixed P, has a considerable influence on the value of the amplitude of the vibrations of  the punch 
and their attenuation, and also on the value of the oscillation frequency of  the punch on the elastic 
half-space. 
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For small values of t (t < 2h), to determine the law of motion of the punch, it is sufficient to use 
formula (5.7) for the transformants of P(t). 
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